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Giant nonlinearity in the low-frequency response of a fluctuating bistable system
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The response of a bistable system to a low-frequency driving force is demonstrated to display a
giant nonlinearity: a sinusoidal force can induce a nearly rectangular signal in the system even when
its amplitude is small. The nonlinearity comes about through the force modulating the effective
activation energies of fluctuational transitions between the stable states, which in turn can give rise
to strong modulation of the transition probabilities and the populations of the states, for low noise
intensities. Theoretical results are shown to be in good agreement with the results of analog and

digital simulations.
PACS number(s): 05.40.+j, 02.50.—r

Several tens of papers have appeared in recent years
dealing with fluctuation phenomena in bi- and multi-
stable systems in diverse areas of science, ranging from
condensed-matter physics (dynamics of bi- and mul-
tistable defects in crystals and glasses, in particular)
through optical bistability to geophysics and neurophys-
iology. The problems that have been attacked most vig-
orously are the probabilities of fluctuational transitions
between coexisting stable states (see Refs. [1,2] for re-
cent reviews) and stochastic resonance (SR)—the noise-
induced increase (followed by a decrease, for higher noise
intensities) of the response of a system to a periodic force;
SR was first considered in geophysics in the context of ice
ages [3] and then observed in lasers [4] and other systems
[5]. It was noticed when investigating SR in bistable sys-
tems [6,7] that their response can sometimes be nonlinear
even for a weak driving force. In the present paper we
investigate the nonlinear response of a bistable system to
low-frequency forcing in the presence of Gaussian noise.
We demonstrate theoretically, and by analog and digi-
tal experiments, that a giant nonlinearity of the response
can occur under appropriate conditions.

To gain insight into the physics of the nonlinearity
of the response we note first that fluctuations in noise-
driven bistable systems are characterized by several time
scales. These are the relaxation time(s) in the absence
of noise 7., the correlation time(s) of the noise 7., and
also specific times related to the interplay of the noise
and the “internal” dynamics and equal to. the recipro-
cal probabilities (Wl(g))‘l, (Wz(?))_1 of the noise-induced
transitions 1 — 2 and 2 — 1 between the stable states
1,2. These probabilities are physically meaningful when
the characteristic noise intensity D is sufficiently small,
and their dependence on D is then of the activation type

WSO = Cnmexp(~Rn/D), Rn > D. (1)

The quantity R, may be reasonably called an effective
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activation energy of the transition from the stable state
n. It is given by the solution of a variational problem
[2] for the optimal path along which the system escapes
from a given state, with an overwhelming probability.
The prefactor Cp, in (1) is of order of min(r !, 7,°1).

The effect of a weak additional periodic force A cos Q¢
on the dynamics of the system is at its strongest in the
range of small noise intensities (1) and for frequencies
Q <« 771,771, Before the force is applied, the system
mostly performs small-amplitude fluctuations about the
stable states and occasionally switches from one stable
state to another. The characteristic duration of the tran-
sitions is ~ 7, 7.. Application of the periodic force gives
rise to forced vibrations about the stable states. In ad-
dition it modulates (parametrically, for small ) the ac-
tivation energies of the transitions ;3. Therefore the
escape probability is given by the instantaneous value of
R, (the adiabatic approximation [8,9]) and

Wom = Wam(t) = Wr(z?r)b exp(gn cos Nt),

gn = GnA/D, Q<17 1t (2)
- _ _|9Ra(4)
gn = 9A '

A=0

Here, R, (A) is the value of the activation energy of the
transition from the state n (n = 1,2) for a system driven
by a static force A. Since the force is assumed weak
(compared to the dynamical characteristics of the system
in the absence of noise), only the term linear in A is taken
into account in the expansion of R, (A).

It is obvious from (2) that the effect of the field on the
kinetics of a bistable system is determined by the ratio of
A to the noise intensity D, and D is itself small. There-
fore the parameters g; 2 can be arbitrarily large even for
small A. If g; o are large, the transition probabilities are
strongly renormalized, and thus a “dynamically weak”
force can nonetheless make a strong impact on the sys-
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tem as a whole. This is how the giant nonlinearity of the
response arises.

The periodic modulation of the transition probabilities
results in a modulation of the instantaneous values of the
populations wy 2(t) of the stable states which is described
by the balance equation

wi(t) = —[Wia(t) + War(t)]wi(t) + War(t),

3)
’wz(t) =1 —wl(t).

For small |g1,2| < 1 the stationary solution of Egs. (2)
and (3) is of the form of weak-field-induced sinusoidal
oscillations of the populations of the states. The onset
of such oscillations in narrow range(s) of the force fre-
quency gives rise to super-narrow peaks in the spectra
of susceptibility of bistable systems [9]; it is these peaks
that are responsible for stochastic resonance [10].

An explicit solution of Egs. (2) and (3) in the sta-
tionary regime can also be obtained in the opposite case
|g1,2] > 1 where the modulation of the populations by
the weak periodic field is strong, which is the situation
of primary interest for the present paper. To obtain the
solution we note that, since, for large |g1,2|, the transi-
tion probabilities vary by orders of magnitude within a
period according to (2), the transitions from a given sta-
ble state n occur with overwhelming probability within
a short part of the period when W, (t) is close to its
mazimum. Correspondingly, transitions to the nth state
are most likely to occur very close to the times at which
Winn(t) is maximal. The behavior of the system is qual-
itatively different depending on whether the activation
energies R1,2 are modulated by the periodic force “in
phase” or “in contra-phase”, i.e., whether the quantities
g1 and gy are of the same or of opposite sign. The first
case is less interesting, since here the values of the popu-
lations wj (t), wa(t) are nearly time independent: they are
formed on balance when the probabilities of both transi-

tions 1 — 2 and 2 — 1 are nearly maximal and then are
|

wi(t) =1 —wa(t) = —2A i

k=—o00

where ©(t) is the step function, and

__sinh); sinhA2  _ cosh A sinh Ay 7)
T sinh(A; + Az) | ¢ sinh(A; F A2)

The parameter A gives the amplitude of the square wave
(it is of course the same for the populations of the both
states), and w;,Ws = 1 — W, are the average values of
the populations. It is seen from (4) that the decrease
of wi(t) within a period is actually described, not by a
discontinuous drop by 2A for t —t; = 27k /2, but by the
expression wy(t) = (W1 + A)exp [-A1(l +erfty)],t; =
(t —t1 — 2mkQ~1)/71. The expression for the increase
of wy(t), i.e., for the decrease of wy(t), is of the similar
structure.
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“frozen” for the rest of the period of the force (for not

too small frequencies, Q > W,(l?n .

For |g1,2] > 1, g192 < 0 the transitions from one state
are most likely to happen just when those from the other
one are most unlikely and can be ignored. The popula-
tion of the nth state is at its maximal value w,> before
gn cos 2t nearly reaches its maximum, and then, after
some time interval where the system is most likely to
switch, w, (¢t) falls down to its minimal value, w,<. The
quantities wys,wWn< are interrelated via the expression

to+6to
Wp< R Wp> €XP —/ dt Wnm(2) |,
t

o0—6to
lgn] > 1, g192 <0 (4)

to = 2nk/Q for g, >0, to=mn(2k+1)/Q for g, < 0.

The integral (4) can be evaluated by the steepest descent
method, yielding

Wpe = Wp> exp(—2A\,),

(5)
An = W expllgal) (2lonl?/m) %
The characteristic time interval that contributes to the
integral (4) is ~ 7, = Q71(2/|gx|)1/2, and \,, just charac-
terizes the probability of the transition during this time.
In writing (4) it was assumed that 7Q~! > 6to > 7, in
which case the integral (4) is independent of the value of
6tp. The values of wy,s,w,< can easily be obtained from
(5) by noticing that wps + wpme =1, n,m =1,2 (n #
m).
It follows from (5) and from the above arguments that
the periodic time dependence of the populations in the
stationary regime, on the time scale coarse grained over
71,2, is described by a square wave:

[e (t—tl—gg—k)—e(t—tl—ﬂ]—;——l))]-%-wl—A

tr = (m/)(|lg1] — 91)/2lg1], (6)

T

It is clear from (5) and (7) that, for the modulation of
the populations to be strong, not only must |gi,2| be large
but it is also necessary that two additional conditions be
met. First, the frequency of the driving force must be
small, because €2 has to be of order of the maximal tran-
sition probabilities (the transitions must have a chance to
occur during a half-period of the force) which are them-
selves exponentially small for small noise intensity D.
Second, not only one but both of the parameters A;
must be of order 1 or more. The effect arises therefore
in a narrow range of the parameters of the system, the
dependence of the transition probabilities W% exp(lgnl)
on these parameters being exponentially sharp. On the
other hand, in the appropriate parameter range the effect
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is really quite dramatic, with the value of A approaching
its maximum (1/2) once A;,2 exceed ~ 1.5.

In the general case of arbitrary g, Eqs. (2) and (3)
can be analyzed numerically. The stationary solution for
wy,2(t) is periodic in time, and to find it it is convenient
to change from the differential equation (3) to the set of
difference equations for the Fourier components w,; of
wp(t) (wok = 8k,0 — wik) using a standard [11] expansion
of the exponent of a cosine in (2),

[ikQ + W QIo(g1) + Wé?)Io(gz)] Wik

+ 3 W10 + WL (92)] wrncs
s (#0)

wi(t) = Y wikexp(ikQt). (8)

k=-—o00

= W2(‘1))Ik(g2)»

Here, I, are Bessel functions of imaginary argument [11].

Because of the nonsinusoidal time dependence of the
populations of the states, the time dependence of the
ensemble-average value (g(t)) of the coordinate q(t) (and,
indeed, of any dynamical variable) of the system is non-
sinusoidal too. For a dynamically weak force and weak
noise

O

n=1,2

wn (t){g + ARe[xn () exp(—iQ1)]},

(9)

O is the equilibrium position of ¢ in the nth

where g,

state and x»(€?) is the linear susceptibility of the system -

in the nth state in the neglect of fluctuations. Equations
(6)—(9) provide a solution to the problem of the signal
in a periodically driven bistable system with the account
taken of the strong nonlinearity of the redistribution of
the system over the stable states for low noise intensities.
It is evident that signal can sometimes be of a nearly
rectangular shape.

To seek evidence for this predicted giant nonlinearity
in the response to a low-frequency driving force, ana-
log electronic experiments and digital simulations were
performed. The system simulated was an overdamped
Brownian particle fluctuating in a symmetrical bistable
potential. The equation of motion of the system was of
the form of

§=—U'(q) + AcosQt +£(t), Ulq) = _%q +i 4
(10)

where £(t) is white noise, (£(¢)£(0)) = 2Dé(t). If the sta-
ble states 1,2 are chosen so that the equilibrium positions

(0) = —1, q(0 = 1, then the modulation parameters for
the populatlons are g1 = A/D and g, = —A/D.

A sample of analog simulation data obtained from a
circuit model of (10) of conventional design [12] is shown
in Fig. 1. The results refer to comparatively small values
of noise intensity (D = 0.0161) and amplitude of the pe-
riodic force (A = 0.1). It is immediately evident that the
signal is nearly rectangular in shape, in complete agree-
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FIG. 1. The averaged coordinate (g(t)) measured for the
electronic circuit simulating the overdamped system (10) with
Q=1.9%x10"% A = 0.1, D = 0.0161. The results approximate
a square wave.

ment with the above arguments. The departure of the
observed shape from a rectangular one is due partly to
the contnbutlon from the vibrations about the equilib-

rium positions q and partly to the fact that the char-
acteristic halfw1dth of the time interval 7 within which
the transmon between the states is most likely to occur
[~ Q71(2/|91])*/?] makes up ~ 0.2 of the half-period of
the force under the experimental conditions. Detailed
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FIG. 2. The results of the digital simulation of the over-

damped system (10) with Q = 3 x 1074, A =0.12, D = 0.03
showing: (a) time-averaged signal (g(t)) (full curve) compared
to the force scaled to the same amplitude (dashed curve); and
(b) amplitudes of the lowest Fourier components of {g(t)) (tri-
angles) as compared with the theoretical predictions (pluses)
that follow from (8). The dotted line in (a) describes the
theory of the square wave with account taken of the finite
width of the distribution of the switching probability about
its maximum as described below Egs. (6) and (7).
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analysis of the shape of the signal and of the fluctuations
in the system, with account taken of 7 being nonzero,
will be given elsewhere [13].

Some digital simulation results for the same system
(10) are shown in Fig. 2 (see Ref. [14] for the details
of the numerical algorithm). Again, it is obvious from
Fig. 2(a) that the signal is strongly distorted towards a
rectangular shape, as compared to the sinusoidal drive.
The value of the amplitude is very close to 1 and the sig-
nal is shifted in phase with respect to the forcing. It is
seen clearly that the transitions occur just when the ab-
solute value of the force is nearly at its maximum, in good
agreement with the theory. A perfectly rectangular signal
contains Fourier components with odd k£ = 1,3, ... only,
and higher-order components are comparatively small,
their absolute values being equal to (2/kw) for unit sig-
nal amplitude. Correspondingly, the intensities of the
Fourier components of the simulated signal, obtained by
averaging over the time domain, are seen from Fig. 2(b)
to decrease fast for small k. Their values, and also the

values of the phases, are in a good quantitative agree-
ment with the theory (6)—(9) (and the intensities of the
even harmonics were negligibly small, as expected).

We note in conclusion that the giant nonlinearity
observed and investigated in the present paper arises
through an interplay between dynamics and fluctuations,
for dynamically weak forcing. There is a sense in which it
has much in common with the strong nonlinearity of the
response of a system undergoing a phase transition. The
price paid for the effect being so strong is the narrow-
ness of the frequency range within which it occurs. This
feature could, however, be helpful in relation to appli-
cations, in particular for a realization of noise-protected
heterodyning.
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